Functional regulation of the cardiac ryanodine receptor by suramin and calmodulin involves multiple binding sites.

نویسندگان

  • Adam Parker Hill
  • Olivia Kingston
  • Rebecca Sitsapesan
چکیده

Suramin and structurally related compounds increase not only the open probability (P(o)) of ryanodine receptor (RyR) channels but also the single-channel conductance in a unique characteristic manner. In this report, we examine the mechanisms underlying the complex changes to cardiac RyR channel function caused by suramin and the evidence that these changes result from an interaction with calmodulin (CaM) binding sites. In the presence of 100 microM cytosolic Ca(2+), we demonstrate that suramin exerts a triphasic effect on P(o), indicating the presence of high-, intermediate-, and low-affinity suramin binding sites. The effects of suramin binding to high-affinity sites are Ca(2+)-dependent; P(o) is decreased and seems to result from a reduction in the sensitivity of the channel to cytosolic Ca(2+). We suggest that this site is the CaM inhibition site. Suramin also binds to intermediate-affinity sites that mediate an increase in P(o) and an increase in conductance. Cytosolic Ca(2+) is not an absolute requirement for the effects mediated via intermediate-affinity suramin sites. The suramin-induced increase in P(o) and conductance are both concentration-dependent. The correlation between the increase in P(o) and increase in conductance indicates that the binding events which produce an increase in P(o) also lead to an increase in conductance and, because the effect is concentration-dependent, multiple suramin molecules must bind to produce the maximum effect. The low-affinity suramin binding sites are inhibition sites and mediate a reduction in P(o) caused by changes to both open and closed lifetimes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Suramin and suramin analogs activate skeletal muscle ryanodine receptor via a calmodulin binding site.

Contraction of skeletal muscle is triggered by the rapid release of Ca2+ from the sarcoplasmic reticulum via the ryanodine receptor/calcium-release channel. The trypanocidal drug suramin is an efficient activator of the ryanodine receptor. Here, we used high-affinity [3H]ryanodine binding to sarcoplasmic reticulum from rabbit skeletal muscle to screen for more potent analogs of suramin. This ap...

متن کامل

Short- and Long-Term Functional Alterations of the Skeletal Muscle Calcium Release Channel (Ryanodine Receptor) by Suramin: Apparent Dissociation of Single Channel Current Recording and [H]Ryanodine Binding

The present study demonstrates the following characteristic suramin actions on the purified skeletal muscle calcium release channel in single-channel current recordings and [H]ryanodine binding to HSR: 1) Suramin (0.3–0.9 mM) induced a concentration-dependent increase in the open probability (Po > 0.9) at 20 to 100 mM Ca and an almost fully open channel at 1 mM Ca (Po 5 0.95) with a marked shif...

متن کامل

The N-terminal Ca2+-independent calmodulin-binding site on the inositol 1,4,5-trisphosphate receptor is responsible for calmodulin inhibition, even though this inhibition requires Ca2+.

Calmodulin (CaM) is a ubiquitous Ca(2+)-sensor protein that plays an important role in regulating a large number of Ca(2+) channels, including the inositol 1,4,5-trisphosphate receptor (IP(3)R). CaM binds to the IP(3)R at Ca(2+)-dependent as well as at Ca(2+)-independent interaction sites. In this study, we have investigated the Ca(2+)-independent CaM-binding site for its role in the regulation...

متن کامل

Suramin and disulfonated stilbene derivatives stimulate the Ca2+-induced Ca2+ -release mechanism in A7r5 cells.

We have described previously a novel Ca2+-induced Ca2+-release (CICR) mechanism in permeabilized A7r5 cells (embryonic rat aorta) and 16HBE14o-cells (human bronchial mucosa) cells (J Biol Chem 278:27548-27555, 2003). This CICR mechanism was activated upon the elevation of the free cytosolic calcium concentration [Ca2+]c and was not inhibited by pharmacological inhibitors of the inositol-1,4,5-t...

متن کامل

Activation of the skeletal muscle ryanodine receptor by suramin and suramin analogs.

Ca2+ release from skeletal muscle sarcoplasmic reticulum is activated by adenine nucleotides and suramin. Because suramin is known to interact with ATP-binding enzymes and ATP receptors (P2-purinergic receptors), the stimulation by suramin has been postulated to occur via the adenine nucleotide-binding site of the ryanodine receptor/Ca2+-release channel. We tested this hypothesis using suramin ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular pharmacology

دوره 65 5  شماره 

صفحات  -

تاریخ انتشار 2004